2,315 research outputs found

    Collaborative behaviours and professional culture traits in real-time interprofessional clinical simulation

    Get PDF
    Interprofessional education (IPE) has been proposed as a method of creating a collaborative practice ready workforce in healthcare. Postulated benefits of the technique include improving communication between professional groups, which in turn should help to prevent serious untoward events and ultimately improve patient outcomes. Critics of the method have cited poorly designed IPE as a method of reinforcing physician power, and argued there is a paucity of data linking undergraduate IPE to tangible benefits in a patient-facing setting. Simulation has been increasingly used as a method for delivery of IPE, with positive outcomes cited by students and educators alike. Virtual Patients and avatars have been recently used as a delivery method for healthcare education, but there is a paucity of data regarding their use in IPE. Simulation is not a panacea for IPE, many simulations focus on the acute phase of care naturally excluding healthcare professions who are not involved in those situations. Findings from acute simulations may not apply to sub-acute scenarios. Method A sub-acute real-time virtual patient simulation was designed then delivered to educators (n=6) and undergraduate students (n=33) from the professions of medicine, nursing, pharmacy and physiotherapy. Qualitative data was gathered according to a constructivist paradigm using unstructured observation of in-simulation behaviour, focus groups and semi-structured interviews. Results Data was analysed according to Braun and Clarke’s method of thematic analysis. Five themes were identified: technology, education, collaboration, intrinsic behaviours and stereotyping. The simulation was educationally successful with participants citing improved recognition of the skills of other professional groups, and improved physiological and pharmacological knowledge. The real-time aspect of the simulation improved clinical reasoning and forced students to make prescribing decisions, which was cited as beneficial for future practice. The sub-acute nature of the simulation resulted in participants hyper-observing their VP to the detriment of patient care. Good levels of collaboration, team working and appropriate communication were facilitated but students were observed to subconsciously selfstereotype. Conclusions Sub-acute real-time virtual patient simulation appears to be a valid method of enabling students to learn with and from one another. It conveys benefit over traditional educational methods such as classroom-based, problem-based and experiential learning as students are given full responsibility for patient care with little supervision. Self-stereotyping amongst students suggests that students convey stereotypical messages about their own profession to others. This may aid team-building in the undergraduate setting, but if these stereotypical views are transferred to advanced practice, there may be detrimental consequences for team formation and patient care

    A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria, UK

    Get PDF
    A pumping test at rates of up to 50 L s⁻¹ was carried out in the 256 m-deep Florence Shaft of the Beckermet–Winscales–Florence haematite ore mine in Cumbria, UK, between 8th January and 25th March 2015. Drawdowns in mine water level did not exceed 4 m and the entire interconnected mine complex behaved as a single reservoir. Pumping did, however, induce drawdowns of around 1 m in the St. Bees Sandstone aquifer overlying the Carboniferous Limestone host rock. During a second phase of the pumping test, a proportion of the 11.3–12 °C mine water was directed through a heat pump, which extracted up to 103 kW heat from the water and recirculated it back to the top of the shaft. Provided that an issue with elevated arsenic concentrations (20–30 µg L⁻¹) can be resolved, the Florence mine could provide not only a valuable resource of high-quality water for industrial or even potable uses, it could also provide several hundred to several thousand kW of ground sourced heating and/or cooling, if a suitable demand can be identified. The ultimate constraint would be potential hydraulic impacts on the overlying St Bees Sandstone aquifer. The practice of recirculating thermally spent water in the Florence Shaft produced only a rather modest additional thermal benefit

    Anti-Persistence on Persistent Storage: History-Independent Sparse Tables and Dictionaries

    Get PDF
    International audienceWe present history-independent alternatives to a B-tree, the primary indexing data structure used in databases. A data structure is history independent (HI) if it is impossible to deduce any information by examining the bit representation of the data structure that is not already available through the API. We show how to build a history-independent cache-oblivious B-tree and a history-independent external-memory skip list. One of the main contributions is a data structure we build on the way—a history-independent packed-memory array (PMA). The PMA supports efficient range queries, one of the most important operations for answering database queries. Our HI PMA matches the asymptotic bounds of prior non-HI packed-memory arrays and sparse tables. Specifically, a PMA maintains a dynamic set of elements in sorted order in a linear-sized array. Inserts and deletes take an amortized O(log^2 N) element moves with high probability. Simple experiments with our implementation of HI PMAs corroborate our theoretical analysis. Comparisons to regular PMAs give preliminary indications that the practical cost of adding history-independence is not too large. Our HI cache-oblivious B-tree bounds match those of prior non-* HI cache-oblivious B-trees. Searches take O(log_B N) I/Os; inserts and deletes take O((log^2 N)/B + log_B N) amortized I/Os with high probability; and range queries returning k elements take O(log_B N + k/B) I/Os. Our HI external-memory skip list achieves optimal bounds with high probability, analogous to in-memory skip lists: O(log_B N) I/Os for point queries and amortized O(log_B N) I/Os for in-serts/deletes. Range queries returning k elements run in O(log_B N + k/B) I/Os. In contrast, the best possible high-probability bounds for inserting into the folklore B-skip list, which promotes elements with probability 1/B, is just Θ(log N) I/Os. This is no better than the bounds one gets from running an in-memory skip list in external memory

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    A combined pumping test and heat extraction/recirculation trial in an abandoned haematite ore mine shaft, Egremont, Cumbria, UK

    Get PDF
    A pumping test at rates of up to 50 L s-1 was carried out in the 256 m-deep Florence Shaft of the Beckermet–Winscales–Florence haematite ore mine in Cumbria, UK, between 8th January and 25th March 2015. Drawdowns in mine water level did not exceed 4 m and the entire interconnected mine complex behaved as a single reservoir. Pumping did, however, induce drawdowns of around 1 m in the St. Bees Sandstone aquifer overlying the Carboniferous Limestone host rock. During a second phase of the pumping test, a proportion of the 11.3–12 C mine water was directed through a heat pump, which extracted up to 103 kW heat from the water and recirculated it back to the top of the shaft. Provided that an issue with elevated arsenic concentrations (20–30 lg L-1) can be resolved, the Florence mine could provide not only a valuable resource of high-quality water for industrial or even potable uses, it could also provide several hundred to several thousand kW of ground sourced heating and/or cooling, if a suitable demand can be identified. The ultimate constraint would be potential hydraulic impacts on the overlying St Bees Sandstone aquifer. The practice of recirculating thermally spent water in the Florence Shaft produced only a rather modest additional thermal benefit

    The distribution of extremal points of Gaussian scalar fields

    Full text link
    We consider the signed density of the extremal points of (two-dimensional) scalar fields with a Gaussian distribution. We assign a positive unit charge to the maxima and minima of the function and a negative one to its saddles. At first, we compute the average density for a field in half-space with Dirichlet boundary conditions. Then we calculate the charge-charge correlation function (without boundary). We apply the general results to random waves and random surfaces. Furthermore, we find a generating functional for the two-point function. Its Legendre transform is the integral over the scalar curvature of a 4-dimensional Riemannian manifold.Comment: 22 pages, 8 figures, corrected published versio

    Parallel Shortest Path Algorithms for Solving Large-Scale Instances

    Get PDF
    We present an experimental study of parallel algorithms for solving the single source shortest path problem with non-negative edge weights (NSSP) on large-scale graphs. We implement Meyer and Sander's Δ-stepping algorithm and report performance results on the Cray MTA-2, a multithreaded parallel architecture. The MTA-2 is a high-end shared memory system offering two unique features that aid the efficient implementation of irregular parallel graph algorithms: the ability to exploit fine-grained parallelism, and low-overhead synchronization primitives. Our implementation exhibits remarkable parallel speedup when compared with a competitive sequential algorithm, for low-diameter sparse graphs. For instance, Δ-stepping on a directed scale-free graph of 100 million vertices and 1 billion edges takes less than ten seconds on 40 processors of the MTA-2, with a relative speedup of close to 30. To our knowledge, these are the first performance results of a parallel NSSP problem on realistic graph instances in the order of billions of vertices and edges

    Temperature

    Get PDF
    KEY HEADLINES: • The first MCCIP ARC in 2006 reported following what was then the warmest year globally in 2005 (0.26°C higher than the 1981-2010 average). • Since 2005, new global record temperatures have been set in 2010 and then in each successive year 2014, 2015 and 2016. In these last three record years the global average temperature anomaly was 0.31,0.44, 0.56°C higher than the 1981-2010 average. • 2014 was a record warm year for coastal air and sea temperatures around the UK. Between 1984 and 2014 coastal water temperatures rose around the UK at an average rate of 0.28 °C/decade. The rate varies between regions, the slowest warming was in the Celtic Sea at 0.17 °C/decade and the maximum rate was in the Southern North Sea at 0.45 °C/decade. • There is also variability over shorter time periods. In all regions of UK seas there was a negative trend in the 10-year period between 2003 and 2013. This is due to variability within the ocean /atmosphere system which is natural. • There is a trend towards fewer in-situ observations, and this will ultimately influence the confidence in future assessments. • Some gridded datasets can offer alternatives to single point observations, but to understand the patterns of ocean variability, the quality information from ocean timeseries cannot yet be replaced by surface observations or autonomous data collection. • The first MCCIP report card in 2006 used the UKCIP projections from 2002 which had a very limited representation of the SST. • The latest updates to the UK Climate Projections shelf seas models were published in 2016 and projected increases in sea surface temperature for 2069-89 relative to 1960-89 of over 3 °C for most of the North Sea, English Channel, Irish and Celtic Seas. For the deeper areas to the north and west of Scotland out towards Rockall and in the Faroe Shetland Channel the increase in temperature is projected to be closer to 2 °C. • Over the last 10 years there has been a steady improvement in the scientific basis underlying centennial sea temperature projections for the seas around the UK, and significant progress in the field of seasonal and decadal projections. • The scientific basis to such projections and predictions will continue to improve over the next 10 years, with increasing resolution, treatment of climate uncertainties, and methodology. Over the centennial scale the difference between emissions scenarios are still the source of the largest uncertainties. • Development of North West European Shelf (NWS) modelling systems driven by seasonal forecasting systems may allow NWS temperature prediction over the monthly to decadal period

    Benefits of Automated Crystallization Plate Tracking, Imaging, and Analysis

    Get PDF
    SummaryWe describe the design of a database and software for managing and organizing protein crystallization data. We also outline the considerations behind the design of a fast web interface linking protein production data, crystallization images, and automated image analysis. The database and associated interfaces underpin the Oxford Protein Production Facility (OPPF) crystallization laboratory, collecting, in a routine and automatic manner, up to 100,000 images per day. Over 17 million separate images are currently held in this database. We discuss the substantial scientific benefits automated tracking, imaging, and analysis of crystallizations offers to the structural biologist: analysis of the time course of the trial and easy analysis of trials with related crystallization conditions. Features of this system address requirements common to many crystallographic laboratories that are currently setting up (semi-)automated crystallization imaging systems
    corecore